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An experimental and theoretical study of the mixing produced by a plume rising in a 
confined stratified environment is presented. As a result of the pre-existing stable 
stratification, the plume penetrates only part way into the region; at an intermediate 
level it intrudes laterally forming a horizontal layer. As time evolves, this layer of mixed 
fluid is observed to increase in thickness. The bottom front advects downward in a way 
analogous to the first front in the filling box of Baines & Turner (1969), while the lateral 
spreading of the plume occurs at an ever-increasing level and an ascending top front 
results. We develop a model of this stratijiedfilling box; the model predicts the rate at 
which the two fronts advance into the environment. 

It is found that stratification in the environment, when smooth, has no significant 
influence on the dynamics of the descending front. We show that the rate of rise of the 
ascending front is determined by the turbulent mixing occurring at the spreading level. 
Entrainment of environmental fluid from above into the overshooting plume is 
significant; as a result, a density interface develops at this level. Asymptotically, the 
system reaches a state in which a bottom convecting layer, with an almost homogeneous 
density, deepens in a stratified background. The model proposed for this large-time 
behaviour is based on the simple energetic formulation that a constant fraction of the 
kinetic energy supplied by the plume, for mixing across the interface, is converted into 
potential energy of the convective layer. Our experimental results suggest an efficiency 
of approximately 50 % for this conversion. 

We discuss our results in the light of previous studies on turbulent penetrative 
convection and conclude that the theory developed should be valid for an intermediate 
range of values of the Richardson number characterizing the dynamic conditions at the 
interface. The model is applied quantitatively to the process of cooling of a room 
wherein stratification is relevant. The geological problem of replenishment of a magma 
chamber by a light input of magma is also analysed. 

1. Introduction 
The effect of continuous convection from small sources of buoyancy on the 

properties of an environment of finite extent was first analysed by Baines & Turner 
(1969). They considered the situation in which the environment is initially uniform in 
density. An illustration of their problem is given in figure l(a). The point source, 
located at the bottom of the bounded region, generates a plume of turbulent buoyant 
fluid rising under gravity. As the first fluid reaches the top of the closed space, it spreads 
out laterally and produces a layer with a density discontinuity below it - the first front. 
This layer is lighter than the original environment, and the continuing plume, which 
entrains fluid below the front, causes it to move down. Thus, new plume fluid will 
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FIGURE 1. The different flow patterns induced by a plume rising in a confined region of large aspect 
ratio: (a) uniform environment (studied by Baines & Turner 1969); (b) linearly stratified environment 
(present work). 

arrive at the top even lighter and a stable density distribution is built up, gradually 
filling the original uniform environment. 

Baines & Turner (1969) proposed a detailed filling-box model for this interaction 
between the buoyant plume and the environment, taking into account the dependence 
upon time and space. Expressions for the position of the first front as a function of time 
and for the large-time density distribution in the environment were obtained. 
Laboratory experiments confirmed their predictions. Later, Worster & Huppert (1983) 
suggested an approximate analytic expression for the time-dependent density profiles 
in the developing stratification. The evolution of the density field at times for which the 
asymptotic solution of Baines & Turner is not applicable, had previously been followed 
numerically by Germeles (1975). The filling-box model was successful in giving a 
physical explanation for the counter-gradient buoyancy (or heat) flux observed in the 
atmosphere and oceanographic convective layers, and also in laboratory experiments 
on parallel plate convection. Earlier work, developed in terms of mean density 
distributions and a steady state, was incapable of explaining this phenomenon. The 
model was also applied to the process of cooling/heating a room, describing the way 
in which air mixes in such situations. 

Manins (1979) extended the filling-box model, analysing the conditions that ensure 
that the source of buoyant convection is the dominant transport mechanism in the 
region. Restrictions on the aspect ratio (width/height) of the region and on the relative 
strength of the source were imposed. The manner in which the convective fluid 
recirculates to become part of the passive interior was studied in detail. Following this 
line of research, Barnett (1991) recently investigated, in the laboratory, the effect of the 
geometry of the region on the flow pattern. The filling-box process is observed to occur 
only for large aspect ratios. For moderate aspect ratios, a large-scale vertical 
circulation with overturning motion is set up and the environment becomes 
horizontally inhomogeneous. At the extreme of very small aspect ratios the flow 
becomes more complicated. At some distance from the source, the plume interacts with 
the wall and is unable to supply the return flow; the plume flow breaks down and 
thorough mixing with ambient fluid occurs. Unstable stratification then develops at 
this level, giving rise to turbulent convection further from the source. 

Baines (1975) and Kumagai (1984) also extended the work of Baines & Turner, 
replacing the rigid upper boundary of the region by an overlying layer of light fluid. 
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They permitted entrainment of this fluid as the plume overshoots and penetrates the 
layer above. By including a moving density interface, more realistic modelling of 
geophysical problems was possible. 

In the present work we shall analyse the situation in which the bounded environment, 
of large aspect ratio, is initially stably stratified. This is of interest since many 
geophysical processes involving mixing are often complicated by density stratification; 
thermal stratification in lakes or reservoirs, and salinity gradients in estuaries are 
common. This internal structure has a great effect on the flow pattern and associated 
hydrodynamic mixing. 

When buoyant fluid is released in a stably stratified environment, the convective 
plume might not rise to the top of the region. Instead, as a result of the entrainment 
of relatively heavy fluid at the base of the closed space, the plume may come to a height 
where its density equals that of the surrounding fluid; it will then intrude sideways. The 
filling-box process will then occur on a different length and time scale from that in a 
uniform environment. The environment below the front of plume fluid descending 
towards the source will now be stratified, and there is no closed boundary at the top 
of the region (figure 1 b). In this paper we analyse the dynamics of the mixing process 
induced by the plume under these conditions. 

A series of laboratory experiments was performed to investigate the filling-box 
process in an initially linearly stratified ambient. Theoretical ideas are developed in the 
light of these experimental results. We study the effect of the changing stratification on 
the rate at which the descending front travels and compare our results with those 
obtained by Baines & Turner for a uniform environment. The evolution of the 
intruding level of the plume is analysed. We explore the implication of turbulent mixing 
between the plume and ambient fluids at the spreading level. A model, valid for large 
times and based on a simple energetic formulation, is developed. 

The paper is organized as follows. In $2, we give a physical description of the 
problem and report qualitatively upon some laboratory experiments. In $3, the 
laboratory experiments are described. The theoretical model is developed in 94, and 
the theoretical ideas are investigated and compared with experimental results. In 9 5, we 
discuss the implications of our results with regard to the energetics of mixing processes 
in stratified environments. The relation with previous research on turbulent penetrative 
convection is analysed. Finally, the quantitative application of the model to two 
physical problems is described. The main conclusions of the work are summarized in 
96. 

2. A physical description 
Consider a small continuous source of buoyancy in a confined region which is 

initially stably stratified. This may be achieved in the laboratory by injecting, for 
example, water through a small nozzle placed at the bottom of a tank containing a 
stratified salt solution. The resulting flow pattern is demonstrated by the sequence of 
laboratory photographs shown in figure 2. The plume fluid has been dyed for 
visualization. 

The light convecting fluid forms a turbulent plume which entrains dense surrounding 
fluid as it rises. The plume density will thus increase steadily with height, while that of 
the environment decreases steadily. At some level the density difference will vanish, 
although excess momentum causes the plume to continue rising. Ultimately the 
negative buoyancy forces on the plume bring it to rest, and the fluid in the topmost part 
of the plume falls back some distance as it spreads out sideways to form a horizontal 
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FIGURE 2. Evolution of the convective process induced by a plume rising in a linearly stratified 
environment of finite lateral extent. The plume fluid has been dyed for visualization. The photographs 
are of experiment 7A at times (a) 1.5 min, (b) 5 min, (c)  15 min, ( d )  36 min and (e) 120 min. (The 
photographs are actually inverted for consistent nomenclature of fronts.) 

layer. The height at which this occurs lies between the level of neutral buoyancy and 
that where the vertical velocity vanishes. This inertial overshoot and the spreading 
intrusion can be seen in figure 2(a). As a result of the continual removal of ambient 
fluid by entrainment into the plume, there will be a downward flow of that fluid. Hence 
a front of the fluid that has been in the plume descends, analogous to the first front of 
Baines & Turner (1969). 

As time evolves, the density field in the environment changes. In the region below the 
top of the plume the density gradient is sharpened due to differential entrainment, and 
at the same time buoyancy increases. These two changes have opposing effects on the 
resistance to the rise of the plume. Let us examine the evolution of the system shown 
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Expt B, (cm4 s3) N (s-l) A ,  (cm S S ~ )  Injection Symbol 
1A 67 1.66 89 bottom 0 
2A 91 1.62 124 top rn 
3A 61 1.06 77 bottom A 
4A 39 0.956 45 bottom + 
5A 93 0.672 157 top + 
6A 60 0.677 30 bottom 0 
7A 65 1.05 124 top 0 
1B 41 0.634 46 bottom h 
2B 65 0.867 73 bottom 0 
3B 67 1.32 103 top 0 

TABLE 1. The experimental conditions. Labels A and B refer to the tank used (see $3). 

in figure 2. It is clearly seen that the top front of plume fluid is rising. The increase in 
buoyancy then seems to be the predominant effect. The upper part of the plume is now 
surrounded by, and thus entrains, lighter fluid. The buoyancy forces in the plume 
experience a smaller resistance and so the plume will spread out at an ever-increasing 
level. We shall see later that this result is independent of the particular input conditions 
of the experiment. 

In this way two fronts develop in the environment, separating fluid which has at 
some time been in the plume from the original tank fluid ; one moves upwards while 
the other is moving down towards the source. In 54, we present a theoretical model of 
this mixing and predict the rate at which the two fronts advance into the environment. 
We shall now describe the experimental method. 

3. The experiments 
The experiment consists of releasing buoyant fluid, at a steady rate, through a small 

nozzle into a tank of fluid in which there is a stable linear density variation. The 
stratification was produced with salt solution, using the double bucket system (Oster 
1965). The experiments were carried out in two rectangular tanks differing in cross- 
sectional area. Tank A is glass-walled, 57.7 x 42.8 cm in cross-section and 44 cm deep; 
tank B is made of Perspex, has 24.9 x 25.0 cm cross-section and 30 cm depth. 

The source fluid used was either water or a dense salt solution. It was supplied 
through a 7 mm diameter nozzle placed either at the free surface or at the bottom of 
the tank, for negative and positively buoyant releases respectively. A flowmeter was 
used to control the rate of addition of fluid. The flow rates used were sufficiently small 
for the source to approximate one of buoyancy alone and the mass flux could be 
ignored. The liquid released was dyed with food colouring so that its motion could be 
observed. A shadowgraph technique was used to follow changes in position of the top 
and bottom fronts of plume fluid. 

The density distribution in the tank was determined by withdrawing small samples 
of fluid, typically 1 ml, at different levels with a syringe. The density was measured by 
refractometry . 

Experiments were carried out with buoyancy fluxes at the source ranging from 39 to 
93 cm4 sP3; the buoyancy frequency of the initial stratification was varied from 0.634 
to 1.66 s-l. The plume appeared to be fully turbulent and the Reynolds number was of 
the order of 2 x lo3. Table 1 summarizes the experimental conditions for each run. The 
symbols are those used in figures 3, 5 and 8. 

10 FLM 250 
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The position of the virtual source was determined by the method suggested in Baines 
& Turner (1969). The entrainment coefficient, a, was approximately 0.09, which is in 
accord with the value reported in the extensive work on turbulent plumes by 
Papanicolaou & List (1988). The resulting length corrections ( N 1 cm) agree with the 
theoretical predictions obtained assuming that the bounding surface of the plume 
passes through the edge of the nozzle (Morton, Taylor & Turner 1956). 

4. The theoretical model 
Consider a stably stratified region which is horizontally limited, say of uniform 

cross-sectional area A = zR2, where R is an equivalent radius. We assume that a plume 
rises through this region and spreads out at height H,. Owing to the continuous 
variation of the ambient properties described above, the behaviour of the plume is 
time-dependent. However, if the aspect ratio R / H ,  is large, for all times and heights, 
then the time rates of change of the plume properties can be shown to be sufficiently 
small to be neglected in the relevant conservation equations (Manins 1979). The plume 
is then of small radius, compared to R, and the ambient behaves quasi-steadily as far 
as the plume is concerned. 

Using the Boussinesq approximation and assuming a constant coefficient of 
entrainment, the equations representing conservation of volume, momentum and 
buoyancy for a plume issuing from a point source of buoyancy, are respectively 
(Morton et al. 1956) 

(4.1 a-c) d tz(uy2) = a2A, - f z  i""yA) - = a2o 2. ad -(a2w) = 2aaw, - - 
dz 

Here z denotes a space coordinate, increasing upward, with its origin at the point 
source; a is the effective radius of the plume; o is the vertical velocity at the plume axis; 
a is the entrainment coefficient; and A and A ,  are, respectively, the buoyancy of the 
plume evaluated on the plume axis and the buoyancy in the environment, defined by 

A = gcOe-pP)/Pr, (4.2) 
Ae = g@e-Pr)/Pr. (4.3) 

Here, g is the acceleration due to gravity; and p denotes density, pr being a reference 
density. Gaussian profiles of equal width have been assumed for the vertical velocity 
and buoyancy distributions in the plume. Equations (4.1) were originally derived by 
Morton et al. (1956) and have been discussed in detail elsewhere (e.g. Turner 1979). 

For the dynamics of the environment below the spreading height, we follow the 
filling-box model proposed by Baines & Turner (1969). It is assumed that the weak 
downward motion of the outside fluid, caused by entrainment into the plume, can be 
described by an average velocity U. This condition is verified more easily for strong 
stratifications and large aspect ratio R/H, ,  the vertical velocity in the environment 
being then horizontally uniform. In this case two other relations will be satisfied in the 
region. With the Boussinesq approximation, conservation of mass may be written 

since R2 9 a', and the buoyancy field is governed by 
- nR2U = za2w (4.4) 

where molecular diffusion and mixing have been neglected. 
The dynamics of the descending and ascending fronts are now considered in turn. 
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4.1. The descending front 
As mentioned above, when a plume rises in a stable environment, it overshoots past the 
level of zero buoyancy. At the top it forms a fountain, falling back in an annular region 
surrounding the upflow and finally it spreads out horizontally. These observations 
suggest that there should be some degree of mixing between the fluid in the collapsing 
fountain and the environment. It is, in fact, known that the height at which this fluid 
flows out sideways lies slightly above the level at which the plume density first equals 
that of the environment (Turner 1979); this seems to be the result of some mixing. 
However, the entrainment of ambient fluid at the top of the plume does not affect the 
rate of advance of the front of buoyant fluid which first spreads out and begins to 
descend. The movement of the front is totally determined by the rate of entrainment 
into the plume from the region below, where original ambient fluid still exists. 

The details of the lateral outflow are of secondary importance if the thickness of this 
region is small compared to H,. The intrusion then spreads out quickly compared to 
the timescale of the vertical flow in the ambient (see Appendix A). We shall assume that 
the plume fluid spreads out instantaneously into a thin horizontal layer, at the neutral 
buoyancy height. In fact, the bottom of the actual spreading layer will lie close to this 
height (Turner 1986). 

Equations (4.1) and (4.4)-(4.5) may now be solved for the rate of advance of the 
descending front. Let us introduce the non-dimensionalized variables 

"' (4.6) 
5 = H-lz, 7 = 47~gagHi,4-1&~ t, 6 = 47$H$B-% 

j = $B,1 a2wA, q = l&,-BH-gBB-i a2w, 
4 0 m = $&-fH-%@ ao, J 

where H = 2-&-t,-t&N-t7 0 (4.7) 
Bo is the buoyancy flux at the source and N is the buoyancy frequency in the original 
environment. H is proportional to the height at which the plume first spreads out; this 
lengthscale was originally introduced by Morton et al. (1956). For a plume in a stable 
linear stratification, the level of neutral buoyancy is at 5 = 2.13 and the maximum 
height is at 6 = 2.8 (Turner 1979). 

The new dependent variables j, q and m2 represent the fluxes in the plume of 
buoyancy, volume and momentum, and S represents the buoyancy of the environment. 
The new independent variables 5 and 7 are the non-dimensional height and time, 
respectively. In terms of these new variables, (4.1) may be written 

while (4.4) and (4.5) may be combined to give 
as as 
ST = qz. 

(4.8 a-c) 

(4.9) 

The initial and boundary conditions required for unique solution of the governing 
equations are as follows. The initial condition is that the stratification in the 

(4.10a) 
environment is linear : s = - 2 - i ~  at r = 0. 
The boundary conditions specify the plume fluxes of volume, momentum and 

(4.10b7 c) 
(4.10d) 

We have imposed one more continuity condition on the model: the plume spreads 
10-2 
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FIGURE 3. Non-dimensional position of the descending front as a function of time. The solid curve 
is the numerical solution of (4.8)-(4. lo), for a linearly stratified environment. The dashed curve 
corresponds to the theory of Baines & Turner (1969), for a uniform environment. Symbols are 
experimental data (see table I for conditions). 

out instantaneously at the neutral buoyancy height. The density of the environment at 
this level must therefore be equal to the average density of the liquid discharged by the 
plume, 

j = 0 at the spreading height. (4.10e) 
Equations (4.8) and (4.9) are in suitable form for numerical integration. The numerical 
scheme used is similar to that described by Germeles (1975); the initial step is carried 
out using an asymptotic power series solution, the leading terms of which equal those 
in a uniform surrounding (see e.g. Baines & Turner 1969). In this scheme the density 
of the environment is represented by a stepped profile. At each time step (4.8~)  is 
integrated analytically to give the corresponding stepped profile for j ,  while (4.8 a, b) 
are integrated numerically by a Runge-Kutta integrating scheme. Finally, the method 
of characteristics applied to (4.9) determines how the density levels move with time. 

The result of the numerical integration is shown graphically in figure 3. Experimental 
data on the position of the first front as a function of time have also been plotted. It 
is seen that the agreement is good. 
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FIGURE 4. A schematic of the distribution of density in the environment at the spreading level of the 
plume for (a) and encroachment process, (b )  an entrainment process and (c) comparison between (a) 
and (b). 

It is interesting to compare these results with those obtained in a uniform 
environment. The dimensionless position of the front in this latter case is given by 
(Baines & Turner 1969) 

7 = 5('):(@-2.13-;), (4.11) 

which is represented in figure 3 as a dashed line. It is seen that the two curves differ very 
little, in fact by less than 4 % (for a fixed height). This means that the fronts in uniform 
and in initially linearly stratified media travel almost equally fast. The behaviour of the 
plume in the developing stratification must then be very similar to that in a uniform 
environment. This is not so surprising when one recalls that the behaviour of a plume 
in a linearly stratified environment is only a little different from that in a neutral 
environment, almost up to the spreading height (Turner 1979). 

The difference observed in figure 3 is small because the ambient stratification is 
smooth (the buoyancy profiles will be analysed in the next section). Only when the 
buoyancy profile has a strong gradient some distance away from the source will 
entrainment be significantly reduced and the descending front hindered. Indeed, Baines 
& Turner (1969) reported that for large times, when an 'asymptotic density' gradient 
had developed in their system, fronts travelled approximately 11 % slower than the first 
front, for which the environment was uniform in density. 

However, if the environment is smoothly stratified in the region above the source 
(although it may have a sharp variation in buoyancy very close to the source), the 
relation between the position of the front 5 and the time 7 at which this is attained will 
be well predicted by (4.11), with time measured from the moment the plume first 
spreads out. 

We thus conclude that stratification, when smooth, has no significant influence upon 
the filling-box timescale, other than determining the height at which the plume first 
spreads out. 

4.2. The ascending front 
We have seen that the level at which the plume spreads out laterally increases with time 
due to the increase in buoyancy of the surrounding environment. The rate at which this 
front of fluid rises will clearly depend on turbulent mixing at the top of the plume. 
However, if this effect is negligible, the process of rise will be one of simple 
encroachment; the upward rising plume fluid continuously erodes the stable 
stratification above, since it ascends further as the environmental buoyancy increases 
(figure 4 4 .  On the other hand, significant mixing between the upper surface of the 
plume and the ambient fluid will result not only in entrainment of ambient fluid from 
above into the plume, but will also affect the density distribution in some region above 
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FIGURE 5. Evolution of the non-dimensional position of the ascending front as predicted by the 

encroachment model. The results for the descending front (obtained above) are also shown. 

the spreading height (figure 4b) .  The continuing plume will then rise to a height that 
is strongly determined by the new buoyancy profile in this region. We note that the 
encroachment mechanism only occurs as a result of the finite lateral extent of the 
region; in an infinite medium it could not occur. In contrast, turbulent mixing and 
associated entrainment are intrinsic processes, independent of the extent of the region. 

We shall now develop a model for the rate of rise of the ascending front. We begin 
by analysing the role of entrainment at the top of the turning plume. 

4.2.1. The encroachment model: negligible turbulent mixing at the spreading level 
Consider the simple limiting situation in which turbulent mixing at the top of the 

plume is negligible. In this case we can assume that there is no entrainment of fluid 
from above and the spreading height will thus coincide with the neutral buoyancy 
height. 

The equations describing this situation are the same as considered previously and in 
non-dimensional form reduce to (4.8k(4.10). The predicted evolution of the neutral 
buoyancy height as a function of time is plotted in figure 5.  Comparison with 
experimental results shows that this model underpredicts the rate of rise of the 
spreading height by about 20%. This seems to indicate that entrainment of ambient 
fluid during the inertial overshoot of the plume is significant. 

At this stage it becomes important to analyse the evolution of the buoyancy 
distribution in the environment. In figure 6 we present the model predictions for the 
buoyancy profile at different times together with our experimental data. 

For small times the agreement between theory and experiment is relatively good. 
However, for larger times the difference becomes significant. Below the height at which 
the buoyancy equals that of the initial linear profile, theory slightly underestimates the 
actual decrease of buoyancy in the environment. Above this height, the model predicts 
that the buoyancy is unchanged and hence the initial stratification is preserved; in the 
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Buoyancy 
FIGURE 6. The buoyancy profile in the environment, A,,  at times r = 0, 1.0,2.4,4.8, 7.3 and 9.7. The 
curves represent the prediction of the encroachment model. The data are from experiment 7A. Note 
the increase in stratification below the descending front as a result of differential entrainment. 

region just above the theoretical position of the interface, the experimental results show 
that the buoyancy is actually larger than the value in the initial stratification, as 
expected for conservation of buoyancy. The filling-box region is actually deeper and 
the density gradient at its top is greater than predicted by the encroachment model. 
These observations suggest that a significant amount of turbulent mixing with the 
environment occurs at the top of the plume. Owing to limitations of the experimental 
technique used, it was not possible to obtain a more detailed description of the 
buoyancy profile near the spreading level. Nevertheless, it seems clear that there is 
indeed some entrainment at the upper surface of the plume and it is this that we wish 
to show. 

4.2.2. A well-mixed model for large times 
Returning to figure 6, it is important to draw attention to the shape of the density 

profiles at large times. Apart from a thin region near the source, the buoyancy 
distribution in the environment is almost uniform. This is because the timescale over 
which the ascending front rises is very much longer than the timescale over which 
environmental fluid is recirculated through the plume (the filling-box time). Thus, at 
times larger than the filling-box timescale, the environment surrounding the plume is 
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FIGURE 7. A schematic of the real buoyancy profile in the environment at large times (dashed 
line) and corresponding approximation of the well-mixed model (solid line). 

approximately well-mixed. In the region where the plume is spreading out, a density 
interface develops as a result of the entrainment. The buoyancy difference is localized 
in a thin layer, while the fluid above preserves the initial stratification. 

For times larger than the filling-box time we can, therefore, adopt a simple model, 
in which the vertical density profile is approximated by a discontinuous function: 

z < h  
b -Ab-N2(Z-h) ,  z > h, 

(4.12) 

where b is the mean value of the buoyancy in the convective layer and Ab represents 
the buoyancy difference at the interface. A representation of schematic and realistic 
profiles of d,(z) is shown in figure 7. 

Let us consider the process of mixing across this density interface. Whenever fluid 
immediately above the interface is entrained, it is displaced vertically from its 
equilibrium position : light fluid is transported down into a layer of heavy fluid against 
the restoring buoyancy force. Work must be done to overcome this resistance, and this 
work is supplied by the agent causing the mixing - the plume. 

We can thus understand that the rate of growth of the mixed layer in the background 
of a stable stratification will be strongly restricted. A considerable part of the kinetic 
energy supplied by the plume to the top of the convective layer will be used in 
overcoming the buoyancy forces required to entrain fluid from above. It is the resulting 
interactive evolution of the convective layer depth, h, and the buoyancy jump at the 
interface, Ab, that we wish to analyse. 

The kinetic energy flux associated with the mean flow in a plume rising in a uniform 
environment is given by 

E = pw(r)  27cr dr. 
Kna 

(4.13) 

Performing the integration for a Gaussian profile of velocity (see e.g. Turner 1979) and 
using the Boussinesq approximation, leads to 

EK,  = ipr7ca2w3 = I 2Pr B 0 h 2 (4.14) 
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where h is the height considered. The kinetic energy flux associated with turbulence can 
be shown to be small, less than 7 % of that of the mean flow (see Appendix B). We will 
therefore consider, as in classical plume theory, that the turbulent energy flux is 
negligible. The kinetic energy supplied by the plume to the top of the mixed layer is 
then given by (4.14). 

It is now necessary to evaluate the rate of work for entrainment. The volume rate at 
which light fluid is entrained at the interface is (dh/dt)A; this fluid is distributed 
uniformly through the whole depth of the convective layer. Its centre of mass will thus 
descend a distance ih, with the work involved in the process being 

h dh 
2 dt 

W = p,. Ab- -A. (4.15) 

This expression represents the rate of increase of potential energy of the mixed layer 
due to entrainment at the interface. As an alternative, in Appendix C, we derive (4.15) 
from energetic considerations. 

If we assume that the work done per unit time is proportional to the rate of input 
of kinetic energy at the interface, then 

h dh 
2 dt 

p , A b - - A  = ifp,B,h, (4.16) 

where f i s  a dimensionless constant indicating the fraction of kinetic energy converted 
to potential energy of the mixed layer. 

Conservation of buoyancy over the well-mixed region requires that 

(dldt) (iN2h2 - hAb) = B,/A. (4.17) 

We may now use (4.16) and (4.17) to determine h and Ab for a prescribed buoyancy 
flux at the source, B,, and a prescribed buoyancy frequency, N, in the undisturbed 
region. 

The particular initial conditions for this problem, h, and Ab, at t = 0, are not 
relevant. The model developed above is only valid for large times when h and Ab have 
lost their dependence on peculiarities of their behaviour in the initial period. Let us 
begin by taking 

h, = Ab, = 0. (4.18a, b )  

Introducing the scale for the buoyancy jump at the interface to be i N 2 H ,  leads to the 

A J ~  = 2Ab/N2H.  (4.19) 

The non-dimensional variables for time, r, and length, 5, have been defined in (4.6). 
Equations (4.16), (4.17) and the initial conditions (4.18) now take the dimensionless 
form 

( d / d ~ )  ($ - Apy> = 29, (4.20) 
A/3dc/dr = 2% (4.21) 

( 4 . 2 2 q  b) 

Integration gives the evolution of the convective layer depth and buoyancy jump at 

non-dimensional variable 

[, = Ap, = 0. 

the interface 
4 

[ = 2$(( 1 + 2 f )  r);, A/3 = - 5. 
1 +2f  

(4.23a, b) 
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It is now interesting to compare these theoretical predictions with our experimental 
results. However, we cannot use the solutions in (4.23) directly, because in our 
experiments the buoyancy flux at the source relative to the environment is decreasing 
with time. Indeed, the buoyancy of the convective layer continuously increases as a 
result of both the injection of buoyancy at the source and entrainment at its top 
boundary; the behaviour of the plume in this uniform environment therefore also 
varies. This will affect the flux of kinetic energy supplied by the plume to the density 
interface; a time-dependent correction should be introduced in (4.14). We derive this 
modification below. 

Modijication of model for a variable buoyancyjux relative to the environment 
The parameter defining the behaviour of a plume arising from a point source of 

buoyancy in a uniform environment is the buoyancy flux, B,. For the ideal point 
source, for which the volume flux Q, is zero, the buoyancy at the source A ,  is infinite 
(B, = Q, A,) .  Then, finite changes in the buoyancy of the environment, A,, do not affect 
the plume behaviour since A ,  remains infinite when compared to A,.  

However, in the case of a real source, the buoyancy A ,  will be far from being infinite. 
If buoyancy is generated by heat, say a constant heat flux at the source, then even when 
A ,  is changing in time, A ,  - A ,  will remain constant; hence, relative to the environment, 
B, will remain constant. However, if the source of buoyancy consists, for example, of 
a supply of fluid of constant density, then as A ,  changes in time, A, -d ,  will also 
change; the relative strength of the source, expressed by the magnitude of the buoyancy 
flux, will be affected by changes in the buoyancy of the environment. The buoyancy 
flux at the source relative to the environment will now be given by 

(4.24) 

where A ,  has been taken as zero at t = 0. This correction is only necessary when 
considering plume properties that are defined relative to the environment. A similar 
effect of changing buoyancy has been analysed by Baines, Turner & Campbell (1990) 
in the different context of a turbulent dense fountain. 

In our experiments, the changing buoyancy of the environment can be expressed in 
terms of the convective layer depth, h, and the buoyancy step at the interface, Ab, as 

A ,  = N 2 h  - Ab. (4.25) 

The rate at which kinetic energy is supplied by the plume is then (cf. (4.14)) 

EK, = ,or B, h (1 - N 2 h -  Ab). 
A ,  

(4.26) 

The non-dimensional equations describing the evolution of the convective layer depth, 
[, and the buoyancy jump at the interface, Ap, now read 

(compare with (4.20) and (4.21)). 
The value of the parameter N z H / A o  depends on the particular experiment. However, 

it differs little for the experiments described in $3, and the effect of this variation on the 
results is less than the scatter inherent to the experimental measurements (see Appendix 
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FIGW 8. Non-dimensional position of the descending and ascending fronts as a function of time. 
The theoretical prediction for the former corresponds to the model described in $4.1. The position 
of the ascending front is predicted by the well-mixed model, with initial conditions (4.22) (dashed 
line), and (4.28) (solid line). The kinetic energy conversion efficiency,f, is 0.5. 

D). We have for this reason presented the results of the numerical integration of 
(4.27a, b) with initial conditions (4.22a, b), for an average value of N 2 H / d ,  = 0.066. 
These results are compared with the experimental data in figure 8. 

The agreement between the theoretical prediction and the experimental results is 
good for 7 > 6. The value off required to give the best fit for each data set varies from 
0.4 to 0.6. The variability of the experimental results can totally account for this range 
off. Therefore, relating the work for entraining fluid across the density interface to the 
input of kinetic energy into the system by the simple argument described above 
(equation (4.16)) allows us to successfully model the experiments. The efficiency of 
conversion of the available kinetic energy into potential energy of the stratification is 
approximately 50%. Energy losses are due to viscous dissipation and internal wave 
radiation. 

It is known that a plume rising in a linearly stratified environment spreads out at a 
level 6, between 2.13 and 2.8 (Turner 1979). Our experimental results suggest that the 
top of the layer of fluid flowing out sideways lies close to 2.4 (see figure 8). Hence we 
may consider a different initial condition 

(4.28 a, b) 

Physically, this means that all the environmental fluid below the initial spreading height 
is instantaneously mixed at 7 = 0. The solution for an ideal source will in this case be 

= AP, = 2.4. 

(4.29~) 

(4.293) 

with 5, = APa = 2.4. 
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The corresponding results for our laboratory source, including the buoyancy 
correction, have also been plotted in figure 8. As expected, for large 7 the solutions for 
the two different initial conditions tend to each other. Using the revised initial 
condition, the model appears to agree with the data for 7 > 4. At this time the 
descending front has reached the bottom surface (within 8 YO), and the assumption of 
a homogeneous bottom layer becomes valid. 

Equations (4.23 a)  and (4.29 a)  constitute respectively lower and upper bounds for 
the mixed-layer depth from an ideal source at large times. Indeed, initial condition 
(4.18 a, b) corresponds to a state of lowest potential energy for the layer of fluid below 
the spreading level of the plume; in this case it is zero, since the system begins without 
a bottom layer, i.e. h, = 0. The alternative initial condition considered, given by 
(4.28a, b), corresponds to the maximum possible potential energy of the stable layer of 
height h, = 2.4H. It represents an initial potential energy of iN2hiApr  in the region 
below the plume top (the reference density pr is taken to be that at h = 0). The system 
actually starts up with the buoyant fluid being released at height h, and a linear 
stratification below; the potential energy of this layer is intermediate between the two 
values pointed out above, +N2h: Ap,. 

We note that the energy argument given above does not take into account the actual 
stratification at the entrainment level, and therefore its effect on the plume behaviour, 
for small times. Initially there is no discontinuous density interface. Therefore the 
mixing at the spreading level of the plume will be greater, since the resistance is then 
smaller than our model predicts; we can see in figure 8 that, for T c 4, the model 
underestimates the rate of rise of the front, as expected. However, this initial transient 
does not affect the long-time behaviour. 

5. Discussion 
5.1. The energetics of plume mixing in a stratiJedJluid 

We have seen that the mixing process induced by a plume rising in a stratified region 
which is laterally bounded will eventually lead to the development of a density 
interface. Entrainment of ambient fluid across this interface, from above and into the 
convecting bottom layer, is an important dynamical process occurring at the top of the 
plume. 

The model presented in $4.2 is based on a simple energy argument, relating the 
conversion of local kinetic energy of the plume into potential energy of the entrained 
fluid. It is now interesting to analyse the evolution of the system in terms of the global 
energetics. 

For large times the system consists basically of a homogeneous bottom layer through 
which a plume rises, impinging on the stratified buoyant environment above. A 
schematic of the energy transformations then occurring is given in figure 9. As the 
plume fluid rises, its relative potential energy is released. Part of this energy is used to 
advect the surrounding environmental fluid, while another fraction is converted into 
kinetic energy of the fluid now in the plume; some losses due to viscous dissipation will 
occur. At height h, the kinetic energy transported by the plume is O.Sp,B,h, as given 
by (4.14). During the penetration of the plume into the overlying stratified environment, 
a fraction f of this energy is used to entrain buoyant fluid into the bottom layer; this 
energy is stored essentially in the form of potential energy since the kinetic energy 
associated with the lateral outflow of plume fluid and advection in the mixed layer is 
very small. Viscous effects and internal non-breaking waves, which contribute little to 
the mixing, will inevitably originate some losses, and so f is smaller than 1. 
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FIGURE 9. A schematic of the energy transformations occurring in the stratified filling-box process. 
Energy losses due to viscous dissipation and internal wave radiation occur throughout the mixed 
layer, particularly at the density interface at height h. 

The change in potential energy associated with the development of a homogeneous 
density distribution in the mixed layer of depth h, from an initial linear distribution, 
is given by 

AE, = pr A(Abih2-+N2h3),  (5.1) 

where Ab is the buoyancy difference at the interface. Since hAb = :N2h2 - @ , / A )  t (cf. 

AEp = +pr Ah($N2h2 - ( B , / A )  t). (5.2) 

(4.17)), this may be written as 

A schematic representation of the change in potential energy as a function of the height 
of the convective layer, h, for a fixed time t ( t  > 0),  is shown in figure 10. 

Let us begin by analysing the limiting situation for which AE, is minimum. The 
evolution of the convective layer height will be given by 

hmin = (2(B, /N2A) t); ( 5 . 3 )  
(in non-dimensional terms, cmin = 2%). Comparing this result with that obtained in 
44.2, equation (4.23a), we see that it corresponds to the case in whichf= 0. Hence, no 
kinetic energy is used for mixing; the interface is marginally stable, i.e. Ab = 0, and the 
mixed layer is encroaching upon, rather than entraining, the uniformly stratified layer 
above. A schematic vertical profile of buoyancy for this regime is depicted in figure 
4 (4. 

When AEp = 0, all kinetic energy supplied by the plume is converted into potential 
energy of the mixed layer, i.e. f= 1. This corresponds to the maximum entrainment 
intensity and is equivalent to Ball’s limit (Ball 1960 and Manins & Turner 1978). The 
convective-layer depth is, in this case, described by 

h,,, = (6(B, /N2A) t)i. (5.4) 
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FIGURE 10. A schematic representation of the change in potential energy of the system as a function 
of the convective layer height, 12, for a fixed time, t ( t  > 0). 1, Marginal convection, f = 0 
(encroachment model); 2, maximum entrainment intensity, f = 1 (Ball limit); 3, observed,f= 0.5. 

In this ‘energy-conserving’ limit, the convective layer depth is 4 3  times as great, at a 
given time, as when there is no entrainment. The buoyancy step at the top of the layer 
is now maximum, Ab = $N2h. 

Let us now consider the particular situation in which f= 0.5, as observed in our 
experiments. The convective-layer depth is intermediate between the two limits given 
above, 

The change in potential energy of the system is 
hobs = (4(Bo/N2A)  t);. (5.5) 

AEp = - 

corresponding to 1 / 2 / 2  of that in the marginal regime. During the course of convection 
the buoyancy profile in the mixed layer varies in a self-similar manner with Ab = iN2h.  
This is because the efficiency of conversion of plume kinetic energy, f, is constant. We 
note that the change in potential energy is negative due to the injection of buoyancy 
into the system by the source. 

The dashed part of the curve in figure 10 corresponds to unstable states in which 
Ab < 0; the dotted part represents global energy conversion efficiencies which cannot 
be achieved when mixing is performed by a plume. Indeed, the kinetic energy flux 
supplied by the plume to the top boundary of the mixed layer would have to be larger 
than the value given in (4.14) to obtain one of these states. This would imply a smaller 
fraction of the energy released by the buoyancy source being required for recirculation 
and viscous losses in the convective layer. In fact, in this sense a plume constitutes a 
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relatively efficient mixing agent. We shall see below that, for example, Rayleigh- 
BCrnard-type convection is a less efficient mixing mechanism and so the maximum 
change in potential energy of the system would in this case also be negative. 

5.2. The relation with turbulent penetrative convection: entrainment law 
At this stage it is useful to relate our results to those obtained in previous research on 
mixing by convective processes in stratified fluids. The problem of entrainment at the 
top of a convecting layer has usually been analysed in terms of the dependence of a 
dimensionless entrainment rate, E, given by 

on the Richardson number, Ri, 
Ri = aAb/w2,. 

Expressing the energy balance presented in $4.2 (equation (4.14)), in terms of these 
dimensionless variables, we have 

where c, = Fa f; the velocity scale w* has been taken as the mean value over the cross- 
section of the plume at height h. The ratio of the active area of the interface to its total 
area appears in (5.9) due to the inherent localized mixing in our problem. 

The functional relation derived above differs from the findings of both Linden (1973) 
and Baines (1975). The first author analysed the interaction of a vortex ring projected 
against a sharp density interface, while the latter considered the entrainment through 
the top of a plume (or jet) impinging on a density interface in a two-layered system. In 
both these works, an entrainment relation of the type E cc Ri-t was observed. However, 
the experimental results presented in these papers are for large values of Ri, namely 
Ri > 1 and Ri > 3 respectively (a lengthscale equal to the radius of the mixing area is 
considered). In our experiments Ri evolved from approximately 0.2 (considering times 
sufficiently great for the well-mixed model to be valid) to 2.5. In fact, when analysing 
the tendency of Linden’s data for the smaller values of Ri therein, a Rip’ mixing law 
is observed. However, Linden did not comment upon this. 

More recently, Kumagai (1984) extended the work of Baines (1975) to cover a 
broader range of values of the Richardson number, 0.1 < Ri < 70. He presented an 
empirical entrainment law valid for this range of Ri. At large Ri, the asymptotic 
behaviour E cc Rip% was observed, while when Ri --f 0 the experimental results suggest 
a mixing law of the type E = constant. Analysing the experimental results in figure 12 
in Kumagai’s paper, it is possible to model the results in an intermediate range of Ri, 
1.2 < Ri < 30, using a relation of the type E cc Rip’ although this was not pointed out 
by the author. However, the range of Ri over which this law applies is somewhat larger 
than suggested by both the results of the previous investigations mentioned above, and 
those obtained in the present work. 

Nevertheless, it seems that the apparently contrasting entrainment laws for the 
different regimes observed as Ri varies can be explained. According to Linden (1973), 
at large Ri, the entrainment process is controlled by the wave-like response of the 
interface to the bombardment of turbulent disturbances. The motion of the interface 
results in ejection of fluid from the undisturbed region and consequent mixing. This 
phenomenon was also observed by Kumagai (1984). However, at smaller Ri, 
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entrainment seems to be caused mainly by intrusions of large turbulent disturbances 
into the region of lighter fluid and the associated capture of small portions of this fluid. 

In fact, the same functional variation has been reported in a number of laboratory 
experiments on penetrative convection and also in atmospheric and hydrospheric 
measurements. In these studies, the sources of buoyancy are distributed over the whole 
bottom surface ; turbulence develops throughout the convecting layer and active 
mixing occurs over all the interface. Zilitinkevich (1991, pp. 1-77) has recently 
presented a comprehensive model which allows an explanation for the different 
entrainment regimes observed in these processes. 

At this point it is interesting to give a quantitative comparison between our results 
and those previously published, including data on turbulent penetrative convection. 
However, it is difficult to define equivalent scales for velocity and length such that the 
Richardson number does represent adequately the dynamic conditions at the interface 
in these different processes. 

We shall therefore analyse the different results in terms of the ratio of the buoyancy 
flux at the top of the convecting layer to that at the ground. This is an alternative 
formulation to that of E(Ri). The buoyancy flux due to entrainment at the top of the 
mixed layer is given by 

(5.10) 

The ratio B,/B,  represents the fraction of the energy released at the source, measured 
by the magnitude of B,, which is converted into potential energy at the interface, 
measured by B,. From $4.2, we have for a plume 

Bh/BO =f’ (5.11) 
According to our experimental results, f= 0.5, and the ratio of buoyancy fluxes is 
therefore equal to 0.5. 

The results of Kumagai (1984) point to a maximum value for B,/B, of approximately 
0.2 (see his figure 13). This clearly suggests less efficient mixing than our results. The 
difference observed can partly be explained by significant stratification in the bottom 
layer. In a two-layered system, a time is eventually reached when the plume penetrates 
through the upper less-dense layer; this sets a limit on the time during which an 
experiment can be run. If this time is not sufficiently large for the bottom layer to have 
become almost homogeneous, then stratification in this layer is always important. 
Simple calculations suggest that Kumagai’s experiments are in this regime. Thus, more 
energy is needed to overcome the greater resistance to mixing and a smaller value of 
B,/B, should be obtained. We should also note that the buoyancy flux at the source, 
B,, only represents the energy made available to the system in so far as the buoyancy 
in the environment can be considered constant. At large times, when the effect of the 
continuous increase of the environmental buoyancy becomes important, the relative 
buoyancy flux, B,,, is more appropriate (as discussed in $4.2). This can lead to an 
increase as high as 40% for the buoyancy flux ratio at small Ri (large times) in some 
of Kumagai’s experimental results. However, the difference between our results and 
those of Kumagai seems to be too large to be entirely justified by these arguments. 

Zilitinkevich (1 99 1) has reviewed studies on turbulent penetrative convection and 
shows that the value of B,/B, lies between 0.1 and 0.3, with a mean value of 0.2. When 
buoyancy is released over all the bottom surface, turbulence develops throughout the 
convecting layer. In contrast, the mixing produced by the plume is quite ‘organized’; 
turbulent motion is restricted to the convecting fluid in the plume, while surrounding 
ambient fluid recirculates in a laminar state. Hence, energy ‘losses’ during the 

dh Bh = Ab-A.  
dt 
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transport from the bottom source to the top boundary where entrainment occurs, due 
to the convective motions in the mixed layer and inherent viscous dissipation, are 
greater in penetrative convection. We should therefore expect a higher value of BJB,  
in our experiments since here the energy released at the source is preferentially 
channelled to the upper boundary of the mixed layer through the plume. In this sense, 
a plume constitutes an efficient mixing agent. This result appears to support our 
findings. 

Proceeding further, we can try to estimate the kinetic energy flux at the top boundary 
of the convecting layer for a distributed source of buoyancy. There appears to be no 
study of the turbulent velocity field developed in a neutral environment for the 
continuous release of buoyancy at such a source; we have therefore tentatively 
extrapolated the data of Deardorff & Willis (1985) for the vertical profiles of velocity 
in a linearly stratified system. It is found that 

EK z 0 . 2 7 ~ ~  A,  (5.12) 

where w* = ((B,/A)h)f.  (5.13) 
Hence, EK z 0 . 2 7 ~ ~  B, h. (5.14) 

This is smaller than the value obtained for a plume (cf. (4.14)), as expected. Taking into 
account this result and the mean value of BJB,  = 0.2 for penetrative convection, 
suggested by Zilitinkevich (1991), we estimate an efficiency of 0.4 for the conversion of 
kinetic energy into potential energy at the interface. This value is similar to the value 
off measured in our experiments. 

5.3. Two physical applications 
We shall now consider the quantitative application of the model developed in this 
paper to two different problems. The first illustration concerns the process of cooling 
of a room wherein thermal stratification is important; the convection pattern which 
arises when cooling is local and weak is described, We then consider a geological 
application: the replenishment of a magma chamber by the input of light new magma 
at the base. 

5.3.1. Cooling of a room at a top window 
Consider cooling of a stable, thermally stratified room 4 m high and 6 m wide as a 

result of heat transfer, from the warm interior to the cold exterior, through a small top 
window. We assume heat loss is sufficiently small that the descending convective plume 
of cold air initially spreads out at some intermediate level, H, . 

Suppose the surface area of the window is 0.1 m2 and the dikerence in temperature 
between the interior and the exterior is 10 "C. The rate at which heat is transferred to 
the exterior, Q, is then of the order of 10 W (Holman 1983, pp. 265-304). The 
buoyancy flux due to cooling will be given by 

'0 = PgQ/Pr c p ,  (5.15) 

where p is the thermal expansion coefficient and C,  is the specific heat capacity for air 
at constant pressure. Taking p - AK-', pr - loT3 g cm-3 and C,  - 1 J g-l K-l, we 
estimate a buoyancy flux of approximately 3 x lo4 cm4 s - ~ .  Consider a constant 
temperature gradient of 0.5 'C/m in the environment; the initial stratification is then 
linear, with a buoyancy frequency N = 0.13 s-l. Under these conditions, the plume of 
cold air generated at the window will initially spread out at a level 

Hs, = 2 .94  N f  = 1.8 m (5.16) 
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(this corresponds to = 2.13, see $4.2). This distance is measured from the virtual 
origin of the plume, which can be shown to lie approximately 0.8 m above the window 
(see Morton et al. 1956). 

Using (4.1 l), we can estimate the time needed for the top part of the room, from the 
window down to the spreading level, to become almost homogeneous in temperature. 
The position of the 'descending' front ($4.1) of mixed fluid, which moves towards the 
window is 0.8 m from the virtual source and we calculate a value for t of the order of 
45 min. At this moment the actual depth of the mixed layer at the top of the room is 
approximately 1.8 m because the 'ascending' front has ($4.2) propagated a further 
0.8 m down into the room from the initial spreading level, 1 m below the window (cf. 
(5.16)), calculated from (4.29~). As a result of the mixing action of the plume, warm 
air from the top of the room is transported down; somewhat counter-intuitively, 
during a transient period, the room then becomes warmer at the lower levels than if 
there were no cooling at its top. The increase in temperature may be determined from 
(4.29b); we estimate a temperature difference of approximately 0.4 "C between the 
mixed layer and the stratified environment immediately below. 

The time required for the mixed air front to advance down to the ground can be 
calculated from (4.29~). In this case the 'ascending' front ($4.2) is 4.8 m below the 
virtual source, and we predict t - 3 h for this situation to be achieved. The room then 
has an almost uniform temperature, apart from the plume; it is 0.6 "C warmer at the 
floor level than expected without cooling. After this time, a front of cold air starts rising 
from the ground, analogous to the first front of Baines & Turner (1969). 

It is interesting to mention that if one had assumed stratification in the room to be 
negligible and applied the theory of Baines & Turner (1969) for a uniform environment, 
the conclusions would be totally different. Then a cold air front would rise from the 
floor and the room would become gradually cooler from below; with stratification, this 
process would only occur after about 3 h. 

Concluding this example, we should note that, due to the large area of the source, 
the displacement between real and virtual origins is a significant fraction of the total 
depth of the plume. The theory developed in $4 may then not be strictly valid; a real 
finite source should be considered. However, our purpose is to identify timescales for 
the different situations. 

The conclusions above may be applied to the case of a noxious buoyant release in 
a closed space. Depending upon whether environmental stratification is dynamically 
important or not, totally different transient concentration distributions may ensue. 
This would be an important issue when deciding on the location and sensitivity of 
chemical and safety detectors necessary in a building; such an investigation would 
form an interesting extension to the present study. 

5.3.2. Replenishment of a magma chamber by a light input 
Magma chambers are often replenished by an influx of magma of density smaller 

than that of the resident magma (Huppert et al. 1986). For a continuous input of light 
magma, a turbulent plume may then rise above the source. If the resident magma is 
continuously stratified, this plume may penetrate only to some intermediate height in 
the chamber; it will then intrude horizontally. The dynamical evolution of the resulting 
mixing process may then be described by the model developed in 94. 

Following Huppert et al. (1986), consider a magma of density 2650 kg m-3 to be 
input into the base of a chamber 1 km high. A steady flow rate in the range 
1-100 m3 scl is assumed. Let the stratification in the resident magma be linear, with a 
decrease in the density from 2700 kg m-3 at the base to 2660 kg m-3 at the roof. The 
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buoyancy flux at the source is then B, = 0.18-18 m4 sc3 and the buoyancy frequency 
in the environment is N = 1.2 x lo-' s-l. The height at which the plume initially 
spreads out lies in the range Hso = 50-170 m, a small fraction of the total height of the 
chamber. (The coefficient in (5.16) is in accord with Turner 1986 and is different from 
that considered by Huppert et al. ; hence our estimate for Hso is different.) We assume 
further that the magma chamber has a uniform cross-section, with area A = lo6 m2. 
Then, using (4.1 l), we predict that the descending front of mixed magma will reach the 
base of the chamber (within 10 % of the initial spreading level) about 5-50 days after 
initiation of replenishment. An almost homogeneous convecting layer will then 
develop at the bottom of the chamber. Assuming a continual input of magma, the top 
boundary of this layer of mixed magma is then predicted to rise up to the roof of the 
chamber over a period of about 1-10 months (cf. (4.29)). 

6. Conclusions 
The fluid dynamics of buoyant convection in a stably stratified region of finite lateral 

extent has been investigated both experimentally and theoretically. We have restricted 
our analysis to the case of continuous convection from a point source of buoyancy; 
momentum and mass fluxes are assumed to be negligible. An initial linear density 
profile in the environment is considered. 

As a result of the stratification, the rising turbulent plume in general penetrates only 
part way into the environment. In a region of large lateral extent (compared to the 
radius of the plume) it then intrudes sideways, forming a horizontal layer at an 
intermediate height. As time evolves, this layer of fluid, which has at some time been 
in the plume, increases in thickness. The bottom boundary descends due to the 
continual entrainment of surrounding ambient fluid into the plume. The process is 
analogous to that described by Baines & Turner (1969) for a uniform environment. It 
is also observed that the lateral spreading of the plume occurs at an ever-increasing 
level. This is a result of the evolution of the density field in the environment, and gives 
rise to an ascending top front. We present a theoretical model for this mixing process 
and predict the rate at which the two fronts advance into the environment. 

We show that the effect of smooth stratification on the dynamics of the descending 
front is negligible. The rate at which this front travels is then well predicted by the 
theory of Baines & Turner (1969), with its position, h, relative to the source level, given 
by 

(6.1) h = H,O(l+ 0.1 Mio A - 1 4  t p ,  
where time, t ,  is measured from the moment the plume first spreads out at height 
Hs, = 2 .94  N-4, €4 is the buoyancy flux at the source, N is the buoyancy frequency in 
the original environment and A is the cross-sectional area of the region, assumed to be 
uniform. The rate of rise of the ascending front of plume fluid is shown to be 
determined by the turbulent mixing at the spreading level, caused by the collapse of the 
overshooting plume. Indeed, this results in significant entrainment of environmental 
fluid from above into the layer of plume fluid. An increasing density gradient then 
develops in this region - in the limit, a density jump occurs and the process of rise is 
therefore strongly restricted by this interface. 

For sufficiently large times, when the descending front has practically reached the 
base of the region, the properties of the environment below the intruding level of the 
plume become almost homogeneous; a well-mixed layer can then be assumed. We 
present a model valid for these large times, based on a simple energetic argument. It 



300 S.  S.  S.  Cardoso and A .  W.  Woods 

is proposed that a constant fraction of the kinetic energy of the plume at the interface 
level is used for mixing. The predictions of our model are in good agreement with the 
experimental results. These suggest that approximately 50 % of the kinetic energy 
supplied by the plume for entraining fluid across the interface is converted into 
potential energy of the mixed layer. The interactive evolution of the convective layer 
depth, h, and the buoyancy step at the interface, Ab, is given by 

h = H&+ 0 . 2 3 f ~ : ~  A - l d  t);, (6 .2~)  

Ab = 0.25N2h, (6.2b) 
for t > 20H;i A&;. 

The energetic formulation presented is equivalent to assuming a turbulent 
entrainment law of the form E cc RzL1, where E is the dimensionless entrainment 
coefficient (cf. (5.7)) and Ri is the Richardson number describing the dynamic 
conditions at the interface. Comparison of our results with previous studies on 
entrainment at a density interface, suggest that a relation of this type is only valid for 
an intermediate range of the Richardson number. At small Ri, the work of Kumagai 
(1984) suggests E = constant, while at large Ri his investigations and those of Linden 
(1973) and Baines (1975) point to a relation of the form E cc Rz-;. This functional 
variation is in accord with that reported in studies on turbulent penetrative convection. 

We discuss the quantitative application of our model to the process of cooling of a 
room when stratification therein is relevant. It is shown that local weak cooling at the 
top can lead to transient warming at lower levels in the room. An increase in 
temperature of approximately 0.6 "C is estimated. The geological problem of 
replenishment of a magma chamber by a light input of molten rock is also analysed. 
We predict a timescale of the order of one month for mixing to extend throughout the 
chamber. 

This work has been supported by the Commission of the European Communities 
Science Programme through grant B/910076. We would like to thank the anonymous 
reviewers for their very helpful comments. 

Appendix A. Timescales of lateral outflow of plume fluid and of vertical 
advection 

The model for the dynamics of the descending front, developed in $4.1, is valid if the 
lateral spreading of plume fluid occurs on a much smaller timescale than that of the 
vertical flow in the underlying environment; our assumption of instantaneous 
horizontal spreading is then a good approximation to the actual physical process. In 
this appendix, we derive conditions on the source strength and aspect ratio of the 
enclosed region required for the application of our model. 

The lateral spreading of plume fluid is initially turbulent and this results in mixing 
with the overlying stratified fluid. However, this turbulence rapidly decays as it is 
suppressed by the stable stratification, and a high-Reynolds-number quasi-steady 
intrusion spreads radially from the plume axis. The dynamics of this outflowing current 
is then determined by a buoyancy-inertia balance and may be described by a Froude 
number 

Fr = v/Nd, (A 1) 

where v denotes the velocity of the spreading current and dits thickness (see figure 11). 
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FIGURE 11. Sketch of the outflowing intrusion of plume fluid. 

Following Manins (1979), we shall make the simplifying assumption that Fr is constant 
and equal to t. This is in fact a lower bound for Fr, since we are not taking into account 
the density jump which eventually develops at the spreading level in the environment 
(see $4.2). This simple analysis will therefore lead to an upper bound for the timescale 
of outflow. 

We assume further that the downward velocity in the environment at the spreading 
level, Us, is horizontally uniform; this is consistent with our experimental observations 
(see figure 2). Then, by continuity, the outward volume flux of the intrusion at radial 
position Y is given by 

where a, is the plume radius at the spreading level and Qs is the intrusion volume flux 
at r = a,. 

Q = 2nrdv = Q, + Us n(r2 - a:), (A 2a, b) 

The radial dependence of d and u may be obtained from (A 1) and (A 2) :  

The time for the outflow of fluid from r = a, to r = R is then 

Neglecting the small amount of fluid entrained as the plume impinges on the density 
interface, Q, is the volume flux at height H,  of a plume rising in a uniform environment 
(see Turner 1979), and (C 5)  may be written as 

t 1 -  - 2.7(~ , - t~ t@~-1)6 .  (A 6) 
The timescale of vertical advection may be determined from the dynamics of the 

descending front, given by the rate of entrainment at the edge of the plume (cf. (4.11)). 
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The time taken for a front of plume fluid to descend to height 0.2Hs, say, is 
approximately 

t ,  = 2 0 H 3  ABik (A 7) 

Then 

Hence, we may expect our assumption of instantaneous lateral spreading of plume 
fluid to be valid when this ratio is small. In our experiments, [,It, was typically 0.02. 

Appendix B. The turbulent kinetic energy flux in a plume 
In a recent extensive experimental investigation, Papanicolaou & List (1 988) found 

that the r.m.s. turbulent fluctuations in velocity in plumes are self-similar and scale 
with the mean velocity. These authors have presented profiles of the intensity of 
turbulence fluctuations for the axial and radial velocity components. Using their 
results, the turbulent kinetic energy flux 

EK, = cm p 4 ( d 2  + 22.4’’) 27cr dr 

may be evaluated. Assuming a Boussinesq fluid, numerical integration leads to 

EK, = 0.01 lp,xa2w3 = 0 . 0 3 3 ~ ~  B, h. (B 2) 
Comparing this result with that given in (4.14) shows that the kinetic energy flux 
associated with turbulence in a plume is small, less than 7 O h  of that of the mean flow. 

Appendix C. Change in potential energy of the mixed layer due to 
entrainment at the density interface 

change in potential energy is given by: 
Consider an increase 6h in the depth of the mixed layer during time interval at. The 

SE, = pr Abh6hA - pr 6b(+h2 + h6h) A ,  (C 1) 

6b = GhAb/h. (C 2) 

(C 3) 

while conservation of buoyancy requires, to leading order, that 

Combining (C 1) and (C 2), leads to 

SE, = pr AbihhshA. 
The rate of change of potential energy of the mixed layer is then (st + 0) 

h dh dEp = p,Ab--A.  
dt 2 dt 

This result is equivalent to that given in $4.2, equation (4.15). 

Appendix D. The inherent variability of our experimental results 
The parameter N 2 H / d ,  varies from 0.053 in experiment 3A through to 0.083 in 

experiment 1A. The effect of this variation on the predicted height of the ascending 
front is shown in figure 12. The solid curve is the result for the mean value 
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FIGURE 12. Effect of the parameter N 2 H / A ,  on the predicted height of the ascending front. 

N 2 H / A o  = 0.066, considered in $4.2. The kinetic energy conversion efficiency has been 
taken as 0.5. 

The difference seen in figure 12 cannot be resolved by our experimental results. 
Indeed, the inherent variability in these is of the same order of magnitude. The 
precision of our experimental results is mainly restricted by the difficulty in reading the 
position of the front of the shadowgraph. This interface is slightly irregular and more 
diffuse than one obtained in a system beginning with a finite discontinuity in density. 
The position of the front was determined to within k0.5 cm. The other important 
factor which leads to some scatter in the experimental results is the determination of 
the position of the virtual source (see $3) .  We estimate an error of _+ 0.25 cm associated 
with this. The consequent variability in the experimental results restricts the accuracy 
with which we can predict the kinetic energy conversion efficiency, f .  

In $4.2, we suggest thatf = 0.5 0.1. Let us analyse the implication of this range in 
terms of the predicted position of the ascending front. In figure 13(a), we compare 
the data of experiment 1A with the theoretical prediction for N 2 H / A o  = 0.083, the 
particular value for this experiment. Three curves are presented, for the mean and 
extreme values off .  It may be seen that close to 7 = 6, a value off of 0.4 seems 
appropriate, while at 7 = 12, the experimental results suggest a value of 0.6. This 
difference is a result of inherent experimental error. A similar comparison is given in 
figure 13(b) for experiment 3A, with N 2 H / d o  = 0.053. 

Figure 13 shows that only longer experiments, i.e. larger 7 than that covered in our 
study, could lead to a more precise estimation off. This would require a larger tank 
than those used in our experiments, and an adequately sized system to produce the 
initial stratification. However, we should mention that our study seems to cover the 
conditions which are met in many physical situations, as shown by the examples in 
55.3. 
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FIGURE 13. Sensitivity of the predictions of the well-mixed model to the kinetic energy conversion 
efficiency, f. Comparison of theoretical and experimental results for (a) experiment 1A and (b) 
experiment 3A. 
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